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THE ELECTRONIC ENERGY LEVELS
OF THE HEAVY ACTINIDES
BkH3(568), CfM3(50),
Est3(5£1%), AND Fm™3(5!1)*

by

P. R. Fields, B. G. Wybourne,
and W. T. Carnall

Extensive experimental data have been gathered and numerous theo-
retical treatments have been developed to explain lanthanide spectra, but
much less is known about actinide spectra. Experimentally, one must
normally contend with rather high levels of radioactivity in the 5f series of
elements and with corresponding problems of handling, shielding, and radi-
ation decomposition. These factors, together with the extremely small
stocks of transcurium elements presently available, help to explain why
more work involving the actinides has not appeared in the literature. From
a theoretical standpoint, there has been some question as to the relative
magnitude of spin-orbit and ligand field interactions in the actinides, whereas
with the lanthanides, ligand field effects are considerably less than those
associated with spin-orbit coupling.

The absorption spectrum of a given lanthanide or actinide ion in a
crystalline matrix, rather than in solution, is of primary interest in terms
of correlation with theoretical calculations since, in principle, one can
identify individual transitions from polarization and Zeeman effect data
taken with crystals at low temperatures. However, very few analyses of
actinide spectra in crystals have been attempted. It is clear that the
density and complexity of states are very great, so progress will necessarily
be slow. Thus, at present, it is useful to employ solution spectra data, at
least to establish the general characteristics of the energy level schemes.

A recent investigation(l) showed that a good correlation can be ob-
tained between the calculated field-free energy levels of the light trivalent
actinides and the solution absorption spectra of these species. Such a cor-
relation emphasizes the factthat, although the trivalent actinides might have
been expected to be more susceptible to ligand field effects than the lantha-
nides (because of the greater spatial extension of the 5f wave functions), one
actually finds that ligand field effects are relatively small compared to
Coulomb and spin-orbit interaction energies in both series. In the investi-
gation referred to, the combined matrices of electrostatic and spin-orbit
interaction were diagonalized, giving a complete intermediate coupling cal-
culation. The electrostatic interaction was expressed in terms of linear

* Based on work performed under the auspices of the U. S. Atomic
Energy Commission.
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combinations of the Slater radial integrals, F,, F4, and Fy; the spin-orbit
matrices were calculated in terms of a spin-orbit coupling constant, {. In
practice, these radial integrals are treated as empirical parameters to be
varied to obtain the best fit to experimental data. To simplify the calcula-
tions, it is desirable to reduce the number of variables. If the nf-radial
wave functions are assumed to be hydrogenic, values for the ratios of the
Slater integrals F4/F2 and FG/FZ can be calculated, leaving only F, and (
to be assigned values consistent with the experimental data. Experience
has shown that these hydrogenic ratios are more realistic than might have
been supposed. Attempts were made to fit the energy levels of the nf® con-
figuration with several different Slater F) ratios, including those based on
Hartree-Fock calculations.(2) These attempts, along with preliminary re-
sults of a study in which a computer was programed to maximize the fit of
all four parameters to the experimental results for Am+3(5f6),(3) all indicate
that the best correlation is obtained with Slater Fy ratios close to those of
the hydrogenic approximation.

One result of the study of the light actinide spectra was that values
of F, and ¢ that gave a good fit to the experimental data, to a first approxi-
mation, increased linearly with atomic number Z (see Figs. 1 and 2). This
suggested that it would be useful to extrapolate directly the parameters F,
and € into the second half of the actinide series. Then the 5f-hydrogenic
ratios of F4/FZ and F6/F2 could be used to carry out a complete intermediate
coupling calculation for the configurations 5£8 to 5f!%. It was not practical
to use this type of approach previously, since patterns in the behavior of
the light actinides had not been established. In addition, experimental data
on the transcurium elements are not sufficient to establish clearly the
parameters for such calculations. Only with Cft* have any absorption bands
actually been observed. 4
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Fig. 2

Extrapolation of Values of F,
Versus Z Based on Best Fits
to Experimental Data for ut?
through Cm™3
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Experimental observation of the absorption spectra of elements be-
yond fermium will probably not be feasible since radioactive half-lives are
too short to make it practical to produce even microgram amounts of these
elements. It is expected, on the basis of projected transplutonium produc-
tion programs, that 100-mg quantities of berkelium and californium, 10-mg
quantities of Es2?%3, and 100- ugm quantities of Fm?®* can eventually be made
from 300 gm of Pu®*? during a 1.5-year irradiation. 5) The problem associ-
ated with radiation decomposition of the solvent in the presence of macro
amounts of short-lived isotopes was exemplified by early attempts to ob-
serve the spectrum of curium using cm?%.(6) This type of problem, and
the necessity for remote handling of many of the isotopes in this region
due to the neutron hazard (short, spontaneous-fission half-lives), suggest
that much of the work will continue to be done with essentially micro tech-
niques. Thus it seems useful to obtain, on the basis of present information,
some estimates as to the spectral regions in which absorption bands of the
trivalent transcurium elements might be expected to occur.

One obstacle to earlier attempts to extrapolate values of F, and €
into the heavy actinide region resulted from apparent difficulties in achiev-
ing a good fit to the experimental data for Cm*?. Such problems were
largely resolved when Wybourne i proposed that a weak absorption band,
seen in solution spectra near 0.590#(8) but not in the fluorescence spectrum
of CmCl; in LaC13,(9) constituted the first excited multiplet level in the sys-
tem. The new parameters for Cm™? proved to be consistent with those for
the lighter actinides. The results of the direct extrapolation of values of
F, and { from the first half of the 5f series into the second half are shown
in Figs. 1 andeZ:
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To calculate the energy levels for Bk™3 through Fm'3, the extrapolated
values of {sf and F,, collected in Table 1, were used, together with the follow-
ing 5f-hydrogenic ratios of the Slater integrals:(lo)

23255/163559 = 0.1422;

F,/F,
F¢/F, = 102725/6378801 = 0.0161.

The results (up to 30,000 crn‘l) are tabulated in Tables 2, 3, 4, and 5, and
shown graphically in Fig. 3. In the intermediate coupling calculations re-
ported here, the quantum numbers L and S cannot be employed usefully

to designate a given energy level since each level is composed of a linear
combination of many different LS states, all having the same J-value. This
composition, for components which contribute =10% of the character of the
level, is recorded in the tables. Experimental and calculated results for
Am™ and Cm™3,(1) as well as the data of Conway et al.(4) for Cf3, are in-
cluded for comparison in Fig. 3. I

Table 1

EXTRAPOLATED VALUES OF C.f AND F,
FOR Bk'® THROUGH Fm™?

Ionic
; -1 -1
Species 10 ((rza ) G i ™"))

Bk™3 299 3260

cue 318 3580

EsT3 338 3900

Fm™'? 358 4220

Table 2
ELECTRONIC ENERGY LEVELS OF BK*3
(010 30,000 cm™h)
Calculated Calculated
Ener?y Enerqy
5 (cm-1) % C ion of States? A (cm-1) % Composition of States?

6 0 74% TF; 21% 56 3 22,19 43% 5G; 21% 5H; 15% 3F; 125 36
4 4,588 52% TF; 25% 2D 8 22813 42% 5L; 19% 3K; 17% 51; 13% K
5 4,946 82% TF; 11% 56 9 23,001 65% 5L; 17% oK; 11% 3M
3 7.115 71% F; 17% 5D 6 23,59 37% 51; 21% 3K; 13% 5H; 12% 56
2 8,367 63% TF; 21% 5D 2 24,693 69% 56; 21% 3F
i 9,939 73% TF; 21% 5D 5 26,026 36% 5F; 26% 5G; 14% 36; 11% 5H
0 10,241 71% TF; 23% 5D 6 26,373 26% 51; 23% 3H; 16% 5H; 13% 56
6 15,9% 20% 3H; 13% 3K; 13% 31; 13% TF 7 26,584 40% 5L, 32% 5H; 13% 51
4 16,032 40% TF; 34% 5D; 15% 3F 3 27,045 45% 5D; 19% 5F; 14% TF
10 19,981 67% 5L; 25% 3M 0 27,497 39% 3p; 3% 1S; 17% TF; 10% 5D
4 2,071 22% 50; 21% 56; 19% 5H; 13% 3H; 11% 36 4 27,866 37% 5F; 20% 5G; 14% °D; 12% 5H
7 20,9% 26% 5H; 21% 5L; 17% 3K; 16% 31; 11%5 | 5 28,070 2% 3H; 195 36; 19% 56
5 21,451 33% 5H; 25% 56; 13% 3H; 12% 51 7 28,828 2% 31; 26% 51; 17% 5H; 13% 3K; 10% 5K
2 2,117 38% 3P; 25% TF; 12% 3D 8 29,2571 47%%1; 31% 5L 13% 3K

a0nly components amounting to 10% or greater are shown.
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=
1512
12
92
132
1112
92
32
2
712
1512
512
512
12
1712
2112

ELECTRONIC ENERGY LEVELS OF Cf*3

Table 3

0 0 30,000 cm=1)

Calculated
Enefiy .
(em-1) % Co of States? J
0 725 6H; 23% 41 1912
7,550 45% 6F; 2% 46; 17% 6H 912
7,629 39% 4F; 32% 6F; 14% 4G 1112
7,906 84% 6H; 125 41 512
11,782 45% 61; 35% OF; 11% 46 132
13417 51% 6H; 21% 6F; 19% 46 312
13,526 325 4D; 27% OF; 17% 2P 12
14,151 60% 6F; 22% %F 1172
15,299 53 6k; 23 46 912
16,176 25% 2K; 18% 6H; 17% 2L; 13% 41; 13% 4K 152
16,300 30% OF; 26% 6H; 15% 46 912
17,254 37% OF; 29% 6H; 13% 4; 12% 4D 152
17,697 56% 6F; 37% 4D 3
2,7% 48% 4K; 26% 4L 14% 2L; 13% 40 12
21,691 76% 4M; 21% 2N 512

30nly components amounting to 10% or greater are shown.

Y S RS

1512
92
1172
1312
32
912
1112

Calculated

(cm-~:

Enerﬁ'
0
10,554
11,733
13,975
14,211
18,809
19,332
19,752
20,251
21,837

Table 4

ELECTRONIC ENERGY LEVELS OF Es*3

% Composition of States?

7% 51; 20% 3K
90% 51

40% 36; 32% 5F; 14% 3H
55% 51; 29% 3H

27% 3D; 25% 3P; 15% 3S; 15% 1D

43% 5, 28% 3F
50% 51; 26% 5F; 18% 3H

32% 51; 24% 3H; 19% 5F; 11% 3F
41% 3K; 19% 51; 19% 1L; 16% 3L

67% °G; 23% 51

0 to 30,000 cm-1)

A ol () ) s

30nly components amounting to 10% or greater are shown.

Table 5

ELECTRONIC ENERGY LEVELS OF Fm*3

(0 to 30,000 cm-1)
Calculated
Energy
(cm-1) % Composition of Statesa e
0 91% 41 512
9,808 0% 26; 39% 4F; 16% 2H 2
11,686 52% 2H; 25% 41; 21% 46 32
12,341 97% 41 1502
15,262 34% 2P; 30% 45; 2% 20 12
20,23% 3% 41; 31% 4F; 30% 2H 912
22,409 48% 4 1; 48% %6

a0nly components amounting to 10% or greater are shown.

Calculated
Energy
(cm-1) % ion of States?
22,194 53% 4L; 29% 4M; 1% 2M
22,616 34% OF; 28% OH; 16% 4F; 11% 26
22,9% 43% 46; 31% 6H; 12% 2H
23,097 38% 4P; 32% 6P; 13% 2D; 10% OH
2379 335 41; 25% K; 17% H
2,174 42 6F; 25% 4P; 14% 2p; 11% bP
24,945 3% 4D; 27% 6P; 16% %F; 14% 6H
25,87 33% 41, 17% 2H; 16% 4G; 13% 9; 12% 21
21,186 2% 4F; 19% 2H; 16% 41; 14% 4H; 13% 46
28,044 26% IM; 23% 20; 22% 4K; 15% 41; 1% %K
28,894 38% 41; 24% 2H; 13% 4H; 11% 26
29,202 32% 41; 19% 4L 15% 2K; 12% 4K; 11% M
29,32 32% 4F; 24% 20; 15% OP; 14% 6F; 119 9P
29,561 33% 4G; 17% 6P; 16% %
29,978 33% 40; 30% %F; 11% 46; 10% 6F
Calculated
EnEqu L
cm-1) % C of States?
22,603 51% 55; 15% 5F; 11% 3
23,711 68% 5F; 17% 3D; 14% 3
23,734 2% 56; 21% 36; 22% 3F
24,6% 45% 5F; 44% 3D; 11% 3P
25,353 39% 56; 31% °F; 16% 36
27,000 84% 3, 16% M
28,000 55% 3K; 21% 3 1; 16% 3L
28,412 43% 3F; 18% 5G; 18% 1D
28,878 2% 3F; 24% 5 1; 23% 5D; 17% 36
Calculated
Enerqy
(cm-1) % Composition of States?
22,582 485 %F; 43% 2D
23,410 85% 4F; 12% 26
25,025 4% 85; 32% 4F; 23 2D
27,680 78% 2K; 13% 2L
2,192 3% 46; 35% 26; 20% 2F
28,259 59% 4G; 18% %F; 14% 26
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Fig. 3

Calculated Free-ion Levels of
B Cm S, Bl s
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A sults for Am™> and Cm™? are
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These computations indicate the energies at which absorption bands
are expected, but they give no information with respect to the probable in-
tensities of the transitions. Attempts to observe the solution absorption
spectrum of Bk'? in the 4500 to 7500 A region have been unsuccessful; how-
ever, it was concluded that any bands in this region have a molar absorp-
tivity (€)less than 20. 11) 1n contrast to these results, several absorption
bands of Cf'3, primarily as CfCl; in LaCl, crystals, have been observed in
the course of experiments in which microgram amounts of the element
were used.(? Only two absorption bands were observed in aqueous solution.
On the basis of this work, it was concluded that € was less than 20 for any
Ct+? bands in the region 4500-7500 A.(11)

Recent theoretical developments(lz' 13) indicate that in the near
future it may also be possible to predict oscillator strengths of transitions

in the transcurium elements.

Electronic transitions within an fN_configuration may be classified
as induced electric dipole, magnetic dipole, or electric quadrupole in nature.
Of these, electric dipole transitions have been shown to be primarily re-
sponsible for observed intensities in the spectra of the trivalent lanthanide
and actinide elements.(14) However, in a limited number of cases magnetic
dipole or electric quadrupole contributions can also become important.
Judd(13) has derived an expression for the oscillator strength of an electric
dipole transition 71/J—>1//_'T|, in terms of its reduced matrix elements, its
frequency, and a complicated function, T, which in part is dependent upon
the crystal field experienced by the ion under consideration. In practice,
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A takes only the values 2, 4, and 6. This means that a set of only three
parameters relates the oscillator strengths for all transitions in a given
solution medium to the reduced matrix elements for the transitions.

Recently computations of the oscillator strengths for transitions in
the fN configurations up to 40,000 cm™! were initiated at the Argonne
National Laboratory. These results will be related to experimentally-
determined oscillator strengths for all the lanthanides, and for the trivalent
actinides through curium. This work will test the theory. If, as expected,
trends in T) in a given medium are revealed, it should be possible to pre-
dict intensities of electric dipole transitions in that medium for the trans-
curium elements.

The oscillator strength of a magnetic dipole transition is much
more readily calculated than that of an electric dipole transition. Suitable
expressions for the oscillator strength of magnetic dipole transitions have
been given by Pasternack. 15)

A previous publication(l) pointed out that as a result of the greater
breakdown of LS coupling in the 5f series as contrasted to the 4f series,
there should be many more possibilities for observing magnetic dipole
transitions in the actinides. The oscillator strengths (P) for the relevant
magnetic dipole transitions for Bk+3, Cf+3, Est3, and Fm+3 have been cal-
culated; the results are tabulated in Table 6. Thus if the electric dipole
character of the J = 5 level of Bk'3, which is expected to be found near
4946 cm™!, were negligible, an absorption band with P = 2.7 x 1077 would
be anticipated. For comparison, in the case of Eu'?, the band observed
near 19,000 cm™! has an experimental value of P = 1.3 x 10-8; thus, an
equally sharp Bk'3 band at 4,946 cm™! might be expected to be twentyfold
as intense as the observed Eu'® band. If this Bk transition were also to
have appreciable electric dipole character, the observed band would be
proportionally more intense. Magnetic dipole transitions determine only
the lower limits of the oscillator strengths expected for the electronic
levels concerned.

Table 6

MAGNETIC DIPOLE OSC]LLATOR STRENGTHS (Pm.D.2
FOR BK*3 THROUGH Fm*

Calculated Calculated
Energy Energy 2

Species J (cm-1) PM.D. X 1079 Species e cm-1) Pm.p. X 10
Bk*3 5 4,946 261 cf+3 132 7,906 460
6 15,937 210 1512 16,176 250
7 20,938 14 1712 20,79 2
3 21,451 25 132 23,79 36

6 23,594 34 152 28,044 3.8

5 26,026 71 1512 29,202 26
6 26,373 26 Est3 7 10,554 565
7 26,584 53 8 20,251 216
5 28,070 03 9 27,000 12
i 28,828 0.4 7 28,000 16
Fm*3 1312 12,341 560
1512 27,680 115

PSS e LA e 2
3 All magnetic dipole transitions in the energy range 0-30,000 cm-1,
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While it may not be feasible to observe the absorption spectra of all
of the heavy actinide elements, it may be possible to do magnetic measure-
ments on very small quantities, as illustrated by Cunningham's measure-
ment of the magnetic susceptibility of Es%®’ on a submicrogram scale.(17)
Therefore, the g-values of the ground-state eigenvector have been calculated
for the various heavy actinides; the results are listed in Table 7.

Table 7

CALCULATED g-VALUES FOR THE GROUND STATES OF
Bk, Cf™?, Es™?, AND Fm™

Calculated
Species A % Composition of States® % Accounted g-value
Bk*3 6 74.4% "F; 20.8% °G; 3.1% *H 99.79 1.44573
Efi 15/2  71.5% °H; 23.0% *I; 3.4% 2K; 1.3% *K 100.00 1.28590
Ests 8 77.3% 51; 20.2% °K; 1.3% 'L; 1.0% °L 99.99 1.21856
Fm'3 15/2  90.7% *I; 9.0% 2K; 0.3% 2L 100.00 1.18202

2 Components of 1% or greater, rounded to the nearest 1/10 are shown.
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